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Abstract

Large multimodal models (LMMs) hold substantial
promise across various domains, from personal assistance
in daily tasks to sophisticated applications like medical di-
agnostics. However, their capabilities have limitations in
the video game domain, such as challenges with scene un-
derstanding, hallucinations, and inaccurate descriptions of
video game content, especially in open-source models. This
paper describes the development of VIDEOGAMEBUNNY,
a LLaVA-style model based on Bunny, specifically tailored
for understanding images from video games. We release
intermediate checkpoints, training logs, and an extensive
dataset comprising 185,259 video game images from 413
titles, along with 389,565 image-instruction pairs that in-
clude image captions, question-answer pairs, and a JSON
representation of 16 elements of 136,974 images. Our ex-
periments show that our high quality game-related data
has the potential to make a relatively small model outper-
form the much larger state-of-the-art model LLaVa-1.6-34b
(which has more than 4x the number of parameters). Our
study paves the way for future research in video game un-
derstanding on tasks such as playing, commentary, and
debugging. Code and data are available at: https:
//videogamebunny.github.io/

1. Introduction

The video game industry is projected to be valued at
$321 billion by 2026 [12, 38] and continues to contribute
more to the global economy. Generative Artificial Intelli-
gence (GenAI) [41] is rapidly spreading across various sec-
tors, disrupting the ways in which many traditional tasks
are executed [6,11]. In the realm of gaming, GenAI has the
potential to enhance many aspects, such as providing a bet-
ter in-game experience by generating more realistic conver-
sations with non-playable characters (NPCs) [34] or better
graphical assets [8, 17, 36, 55].

Large language models (LLMs) and large multimodal
models (LMMs) represent advancements in GenAI with the

VIDEOGAMEBUNNY understands game context

Question: Are there any visible glitches or errors in
the game environment?
VIDEOGAMEBUNNY: (D): No, there are no apparent glitches. ✓

Bunny:(B): Yes, the glowing orb is clipping through the counter. ✗

LLaVA-1.6-34b: (C) Yes, the ‘Additional Download’
progress bar seems stuck. ✗

Figure 1. VIDEOGAMEBUNNY is a model specifically fine-tuned
on video game content, enabling it to understand game contexts
and respond to related questions more accurately.

potential to function as vision assistants and solve complex
problems across various domains [1,5,45]. In video games,
LMMs can offer significant benefits for both in-game ex-
periences and game development. In-game, LMMs can
serve as vision assistants, enhancing players’ experiences
by guiding them through tasks like crafting new items [32].
They also have the potential to narrate the game, summarize
events, and highlight critical gameplay moments [4]. For
game development, LMMs have the potential to assist in de-
tecting bugs [42], creating bug reports, and deploying auto-
mated in-game bots that interact with the environment [44].
These applications require robust models capable of under-
standing game content.

Despite advances and promises, existing LMMs, par-
ticularly open-source models, encounter challenges in ac-
curately understanding game content, such as scenes and
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world physics [42] (e.g., see Fig. 1).
In this study, we make the first important step towards

addressing these challenges by releasing a suite of datasets
specifically designed for video game content and introduc-
ing VIDEOGAMEBUNNY, a model trained for video game
content understanding. Our study centers on the following
research questions:

(RQ1) Which type of data has the potential to improve
the model’s performance?
(RQ2) Which data type mixture strategy improves the
model’s performance the most?
(RQ3) How does VIDEOGAMEBUNNY perform com-
pared to state-of-the-art (SOTA) open-source models
on game understanding tasks?

Our main contributions are as follows:
1. We release VIDEOGAMEBUNNY, a model specifically

fine-tuned for video game question-answering tasks.
2. We release a suite of datasets containing 185,259 video

game images from 413 games, featuring various game-
play elements and graphical styles. Our datasets in-
clude 389,565 image-instruction pairs with captions,
question-answering tasks, and JSON representations
of images (see Sec. 4).

3. We conduct experiments to demonstrate the effective-
ness of different instruction datasets and their impact
on the model’s performance (see Sec. 6).

4. We release a replication package containing the train-
ing logs and intermediate checkpoints at https://
videogamebunny.github.io/.

2. Background and Related Work

2.1. Large multimodal models

Large multimodal models (LMMs) enhance large lan-
guage models (LLMs) by incorporating additional modal-
ities such as images or audio, enabling them to process
multimodal inputs and generate textual outputs. The role
of the language model is to comprehend user instructions
and produce responses based on the additional modality in-
puts provided. Standard approaches to create LMMs in-
volve combining pre-trained models with different modal-
ities via projection layers. These layers can be imple-
mented using simple mechanisms such as multilayer per-
ceptrons (MLP) [24, 27] or transformer layers [25]. Alter-
natively, a resampler module like Perceiver [3, 20, 21] or
Qformer [10, 60] selectively chooses features to reduce the
number of visual tokens based on the context and instruc-
tion, enhancing efficiency and maintaining performance.

In this study, we focus on LMMs that accept input im-
ages and text to produce responses, particularly using the
LLaVA-style architecture [29], which is one of the most
popular methods [14, 26, 28, 33]. This architecture employs
an MLP layer to integrate vision tokens with a language

model.

2.2. Instruction following data

Large models trained on massive corpora of text, such
as GPT-3 [7], T5 [37], and PaLM [9], are not inherently
instruction-following, meaning they do not respond to user
queries. To enable these models to follow user instruc-
tions and answer queries, they usually undergo a process
called instruction tuning [35, 56]. This process involves
fine-tuning the models to handle specific user instructions,
such as questions or commands, allowing them to respond
appropriately based on the given instructions.

In the multimodal context, particularly for models that
accept visual inputs, there are various types of visual
instruction-following data, such as detailed descriptions,
conversational style question answering (Q&A), and com-
plex reasoning. Researchers have explored diverse ap-
proaches to generate such data, including the use of aca-
demic text-oriented visual Q&A datasets [10]. The LLaVA
model [24] demonstrated that leveraging a strong text-only
LLM and an image dataset annotated with object names and
bounding box information can be converted into effective
visual instruction-following data.

2.3. LLMs and LMMs in video games

LLMs have shown strong promise for integration with
games for a wide range of tasks, from content creation to
game-playing agents [13, 19, 30, 39, 43, 47–50, 52, 57, 59].
Large multimodal models (LMMs) can further enhance this
integration by providing richer context inputs such as im-
ages and videos to enable broader applications. Projects like
Cradle [44], which focuses on playing Red Dead Redemp-
tion 2 with GPT-4V [1] showcase LMMs’ abilities to iden-
tify objects, characters, and environmental features and as-
sist in controlling the game. Beyond gameplay, LMMs have
found applications in game testing [42, 43], where they are
leveraged for detecting and interpreting video game bugs.

Our study is the first to explore enhancing an LMM’s
general game understanding, rather than focusing on a spe-
cific game or task. We use screenshots from 413 games,
aiming to improve capabilities across various game-related
tasks by developing broader game comprehension skills.

2.4. Empirical analysis of large multimodal models

Some previous studies have conducted experiments to
see how different architectural components or data sources
affect the general performance of large multimodal mod-
els [22,23,33,46]. For example, McKinzie et al. [33] found
that the input resolution of the input image plays a crucial
role in improving performance, and Laurençon et al. [22]
found that utilizing cross-attention between image and lan-
guage is more effective than the adapter-based method.
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We are the first to systematically investigate the impact
of different instruction-following datasets and their combi-
nations on the performance of LMMs in game understand-
ing tasks.

3. VIDEOGAMEBUNNY Model Architecture
In this section, we describe the architectural choices and

configurations behind our model, VIDEOGAMEBUNNY.
VIDEOGAMEBUNNY is based on Bunny [14], a family of
efficient and high-performing LLMs known for their com-
petitive or superior performance on various benchmarks
compared to many open-source alternatives.

Bunny follows the same principle as LLaVA [24, 27] for
the integration of image inputs. Using a shallow network of
multilayer perceptrons (MLPs) as the projection layer, vi-
sion embeddings extracted from a strong pre-trained vision
model are processed and provided as image tokens for the
language model. This technique effectively leverages pre-
trained vision and language models, allowing them to work
together efficiently.

Bunny offers various combinations of vision and lan-
guage models and supports images with resolutions up to
1152×1152 pixels. For creating VIDEOGAMEBUNNY, we
selected Bunny configurations that deliver the best perfor-
mance [14] while being small enough to run on a consumer-
grade graphics card. We use LLama-3-8B [2] as the lan-
guage model and SigLIP [54] with the S2 wrapper [40]
for the vision encoder. The S2 wrapper extracts features
from an input image at various scales to form a multi-scale
feature. This is potentially useful since video games of-
ten contain visual elements at different scales, from tiny
UI icons to large objects. A multi-scale feature could cap-
ture these diverse elements. Fig. 2 shows the architecture of
VIDEOGAMEBUNNY.

4. Instruction-following Data for Video Game
Content

One of the main challenges limiting the ability of open-
source models to generalize effectively to video game con-
tent is the lack of instruction-following data specific to
video games in public datasets. Our goal is to collect
game-specific data to address this challenge. In this sec-
tion, we explain the process of collecting and generating
game-specific instruction-following data.

4.1. Video game images

We collect images from YouTube by searching for game-
play walkthroughs with Full-HD, 4K, and 8K quality. These
high-resolution videos ensure that downsampled frames re-
tain more information and details compared to lower quality
videos. We randomly sample frames from the downloaded
videos and label them with the corresponding game name.

              Language Model (Llama-3) 🔥 LoRA

🔥  Vision Encoder 
(SigLIP)

🔥 MLP Adapter

Input Embedding

Text Encoder

❄ 

❄ 

A first-person view screenshot of the video game shows two 
soldiers clearing a room with a panda and monkey painted 
on the wall.

🔥 Trainable     ❄ Frozen

Describe the image in one 
sentence👤

Figure 2. Architecture overview of VIDEOGAMEBUNNY. An im-
age input and a textual instruction are fed into the language model
to produce a response. The image is passed through a separate
pre-trained vision encoder and a projection layer to align the em-
bedding space between the two models. and icons show
trainable and frozen layers respectively

In total, our dataset contains 185,259 images from 413 dif-
ferent video games, encompassing various genres, graphic
styles, and gameplay mechanics. Fig. 3 shows some sample
images from our dataset, and Fig. A5 shows the distribution
of images per game.

4.2. Generating instructions

Following previous studies [27, 29, 51], we employ an-
other robust model to generate instructions in the form of
user queries and responses for images in our dataset. We
categorize the instructions into four types: short captions
(70,673 samples), long captions (70,799 samples), image-
to-JSON (136,974 samples) and image-based question an-
swering (81,122 samples). In this section, we explain how
we generate each type of instructions. Fig. 4 shows an
overview of the data generation process.

4.2.1 Image captioning

Image captioning is a basic form of instruction-following
that generates a description of the input image. An im-
age caption can be short and concise, providing a high-level
overview of the image, or very detailed, covering fine-grain
details. Our dataset includes both forms of image caption-
ing to meet user queries, whether they seek a detailed cap-
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Figure 3. Our dataset includes sample video game images that showcase a wide range of characters, environments, mechanics, camera
viewpoints, and artistic styles. These styles vary from western to contemporary and futuristic, and from realistic to fantasy settings.
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Short Captions 
Generator: Gemini-1.0-Pro-Vision

70,673 samples

Long Captions 
Generator: GPT-4V

70,799 samples

Image-to-JSON 
Generator: Gemini-1.5-Pro

136,974 samples

Question Answering 
Generator: LLama-3, GPT-4o

81,122  samples

Evaluation Set 
Generator: Gemini-1.5-Pro

3,375 samples
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Figure 4. Overview of the dataset generation process.

tion or a short summary. In addition, it includes a structured
version where the image is described in 16 predefined fields.

Short captions: We use Gemini-1.0-pro-vision to ob-
tain short descriptions of a subset of images in our dataset,
which includes 70,673 images. We use the “Describe the
image” prompt, which generates captions typically consist-
ing of one or a few sentences.

Long captions: While short captions provide a high-
level overview of the image, it lacks many details in the
image which might be useful for the user. To address this,
we use GPT-4V to get detailed captions of all images in the
previous section (see Fig. A1 for the used prompt).

Image-to-JSON: Another comprehensive method for
describing images is converting them into a JSON format.
This approach summarizes an input image into a JSON
structure, with each key describing an element from the im-
age, such as characters in the image or description of Game
UI. Unlike typical captioning, this method provides a tem-
plate that must be filled. If the image lacks a certain el-
ement, that part remains empty, indicating the absence of
that element in the image. This ensures a more detailed and
structured representation of the image content.

Another benefit of describing an image in JSON is that
this structured representation facilitates integration with
other systems. JSON is a widely adopted format for sharing
information between different software systems. Summa-
rizing the image as JSON can help integrate LMMs in other

systems, such as software testing pipelines, potentially ver-
ifying the game output and ensuring that the visual output
has the desired properties and information.

To create the image-to-JSON dataset, we use Gemini-
1.5-Pro with instructions (Fig. A2) to convert a given image
into a JSON file with hierarchical levels of detail and infor-
mation. The JSON file contains 16 elements that capture
both high-level and fine-grained details of the image. These
keys are chosen to capture game-specific elements from the
image in isolation, which can be used for downstream ap-
plications, such as game testing. It starts with an overall
summary of the image and then moves to specific aspects
such as detailed character descriptions (including facial ex-
pressions and clothing), weather information, summaries of
UI and player inventory, objects in the scene, and lighting
and environmental effects. Tab. A1 shows the keys included
in the JSON output. Our dataset contains 136,974 Image-
JSON pairs. Fig. 5 shows a sample of information extracted
from an image.

4.2.2 Question-Answering conversations

Moving beyond simple image descriptions, a general and
capable model should be able to respond to user questions
based on the content of the image. Below, we describe how
we generate such data for each image (1) from its long cap-
tion and (2) directly from the image itself.

Llama-3-assisted visual instruction data generation:
We use Llama-3 to convert long captions generated by GPT-
4V into a series of question-answering conversations. This
approach is similar to the original LLaVA [29] method, but
instead of using an object’s name and its bounding box in-
formation, we directly utilize long captions.

While long captions provide a rich source of informa-
tion, they lack the structure of question-answer formats. For
example, if a caption describes a person in the image with
specific details, such as clothing, an LLM can generate a
question like, “What is the color of the dress of the person
in the image?” By utilizing a strong text-only model, we
can transform each caption into a multi-turn conversation
between a user and an assistant.

We use Llama-3-70B to transform GPT-4V captions into
question-answer conversations, with the prompt shown in
Fig. A3. The prompt requires questions to directly relate to
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        A set of double doors, secured by a chain and padlock 

        Two armed soldiers, clad in military fatigues, are 
positioned strategically within a room. 

        A whimsically painted mural on the right wall, depicting a 
panda bear and a monkey playfully engaged in a soccer 
match.

        The player has 30 rounds in the currently equipped 
magazine, 42 spare rounds, 1 grenade, and 4 of an 
unidentified item.

        Watermark: Gamer's Little Playground

56

4
2 4

3

1

5

        The room is dimly lit with the primary light source appearing to be a fluorescent light fixture on the ceiling. 6

2

3

4

1

Figure 5. Sample information extracted for the image-to-JSON dataset by Gemini-1.5-Pro. Each sample contains detailed information
ranging from minor details to high-level descriptions, such as: 1 player inventory, 2 3 details about the environment, 4 non-player
characters, 5 the screenshot’s watermark, and 6 lighting.

the image description. We create 496,469 question-answer
pairs for 70,232 images, grouping questions for each image
into a multi-turn conversation.

Image-based question-answering: We use GPT-4o to
generate questions and their answers based on an input im-
age in a single prompt. In the prompt (Fig. A4), we first
ask GPT-4o to examine the image and provide a detailed
description of its content, then to generate relevant ques-
tions based on the content of the image and provide answers
for each question. In the prompt, we emphasize that the
questions should focus on understanding the image to avoid
questions that might not be directly relevant to the image.

4.3. Evaluation dataset

To assess model performance on video game understand-
ing tasks, we created a multiple-choice question evaluation
set using Gemini-1.5-Pro [45]. This approach allows for an
efficient comparison of various models. While Gemini-1.5-
Pro offers significant advantages over open-source models
for data generation, it does have limitations. We reduce
noise in the generated questions as follows:

1. Initial Generation: We use Gemini-1.5-Pro to create
4,000 questions across 10 categories related to video
game content understanding (see Tab. 1).

2. Quality Assessment:
(a) Self-evaluation: We test Gemini-1.5-Pro on its

own questions and found it achieves an accuracy
of 84%.

(b) Manual validation: A random sampling of ques-
tions and answers revealed a 14% error rate (in-
correct or indeterminate answers).

3. Noise Reduction:

(a) We remove 625 samples that Gemini-1.5-Pro had
answered incorrectly.

(b) We conduct a second manual analysis and found
that the error rate dropped to 9%.

5. Experiments
In this section, we describe our experiments to explore

how our collected instruction-following datasets can im-
prove a model’s understanding of game context. We focus
on three research questions:

(RQ1) Which type of data has the potential to improve
the model’s performance? In addressing this question, we
fine-tune Bunny using a single dataset at a time to observe
overall performance trends. Since the primary goal of this
experiment is to identify general trends, we fine-tune Bunny
on different subset sizes for each dataset only once. We in-
crease the subset size from 2K to 60K samples and stop the
experiment if we observe a sharp decline in performance.

(RQ2) Which data type mixture strategy improves the
model’s performance the most? We evaluate different data
mixing strategies at various sizes to see how both mixture
and subset size change the performance of the model. We
use the following four strategies:

1. Random: We randomly sample without replacement
from the combined dataset pool. This serves as a con-
trol group, using no specific selection strategy.

2. Equal: We select an equal number of samples from
each dataset to ensure a balanced representation.

3. Stratified: Datasets are mixed based on video games,,
maintaining the game distribution in the final dataset.
This balances game representation and ensures diverse
image types. We focus on game variety rather than

5
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Table 1. Categories of questions in our dataset, along with a sample question for each category.

Category Description Count

Action Understanding Recognizing and describing the actions taking place within the image. 356
Sample: What action is the character in the foreground performing?

Anomalies and Glitches Identifying errors, bugs, glitches, or placeholder elements within the game environment. 223
Sample: Describe any anomalies or glitches present in the image.

Character Analysis Recognizing characters, understanding their roles, and interpreting their expressions and poses. 312
Sample: What is Aloy’s emotional state based on her facial expression?

Common Sense Reasoning Understanding the image using general knowledge and everyday logic. 430
Sample: Based on the score and time remaining, which team is likely to win the match?

Gameplay Mechanics Understanding the rules and mechanics that govern the game. 273
Sample: What game mechanic is most likely being utilized by the player character?

OCR and UI Reading and interpreting on-screen text and user interface elements. 334
Sample: What is written in the caption box at the bottom of the image?

Miscellaneous Any other type of question that does not fit into the previous categories. 239
Sample: What material are the containers in the image primarily made of?

Scene Understanding Recognizing and interpreting the overall environment or setting in the image. 566
Sample: The racetrack depicted in the image is set in what type of environment?

Small Details Identifying and interpreting small but significant details within the image. 356
Sample: What color is the jacket worn by the character in the foreground?

Spatial Reasoning Testing the ability to understand spatial relationships of objects present in the image. 286
Sample: What is the spatial relationship between the two red markers visible in the image?

instruction types. Games with insufficient samples are
excluded.

4. Weighted: We use the three most effective datasets
from RQ1: image-based question-answering (GPT-
4o), long captions, and image-to-JSON. We assign
weights: 30% each for GPT-4o and long captions, 40%
for image-to-JSON. This prioritizes valuable datasets
to assess their impact on model performance.

We fine-tune Bunny on the above dataset mixture strate-
gies with sizes ranging from 2K to 30K. We repeat each
experiment three times, using different samples for each
strategy to report the mean performance and standard de-
viation. We stop at 30K since our smallest dataset (gener-
ated by GPT-4o) contains 10K samples, and at 30K, we will
exhaust the Equal and Weighted strategies.

(RQ3) How does VIDEOGAMEBUNNY perform com-
pared to SOTA open-source models on game understand-
ing tasks? Building on insights from our experiments,
we create VIDEOGAMEBUNNY, a model fine-tuned on a
dataset of 50K image-instruction samples compiled from
all previously introduced datasets. To assess the effective-
ness of fine-tuning a smaller model on game-specific data,
we evaluate VIDEOGAMEBUNNY against LLaVA-1.6-34b,
a SOTA open-source model with 4.2× more parameters.

Experiment setup: We instruction tune Bunny with
LoRA [18] using the PEFT [31] library. Given that Bunny
has been trained on real images, we unfreeze the vision en-
coder (SigLIP [54]) to adapt to the diverse visual styles of
different games. To prevent overfitting and memorization,
we fine-tune for only one epoch in all experiments.

Given the importance of reproducibility and accessibil-
ity for all researchers, we perform all experiments on a
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Figure 6. Relative performance improvement (pp) of Bunny fine-
tuned on different subsets of each dataset. The image-to-JSON
dataset shows a strong positive trend, while the short captions
dataset degrades performance. The best performance achieved in
the experiment is highlighted in bold.

single NVIDIA A100 GPU (80GB), ensuring a balance
between computational power and accessibility. The total
GPU hours needed to conduct all experiments, including
some preliminary tests, is approximately 900 hours, which
is roughly $2,000 when using cloud providers.

6. Results
RQ1: Which type of data has the potential to im-
prove the model’s performance?

The image-to-JSON dataset has the greatest poten-
tial to improve the base model’s performance. Fig. 6
shows the performance after fine-tuning Bunny using a sin-
gle dataset at a time. Fine-tuning on a subset of the image-
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Table 2. Performance of models fine-tuned on a mixture of data
with various strategies. The Weighted strategy leads to better
performance with smaller dataset sizes, but as size increases, all
strategies perform similarly. We use a strategy similar to Weighted
to train VIDEOGAMEBUNNY with 50K samples.

Size Random Equal Stratified Weighted

2K 76.7 ± 0.9 77.8 ± 0.8 78.0 ± 0.2 79.0 ± 0.6
5K 79.2 ± 0.4 79.9 ± 0.4 80.0 ± 0.5 79.8 ± 0.6
10K 79.8 ± 0.8 80.8 ± 0.6 80.8 ± 0.1 81.4 ± 0.5
20K 81.5 ± 0.1 81.3 ± 0.7 81.8 ± 0.8 82.3 ± 0.9
30K 81.8 ± 0.4 81.2 ± 1.1 81.6 ± 0.7 82.6 ± 0.3

50K – – – 85.1

to-JSON dataset shows the greatest improvements, as this
leads to an accuracy above 82% (+8.7 percentage points
(pp) above the baseline of 73.3%) for subset sizes over 10K,
with the best performance achieved at 60K (+11.7 pp).

While all datasets lead to performance improvement,
short captions can degrade it. Fine-tuning Bunny on a
dataset of 10K or 20K short captions degrades performance
(-35.5 pp and -30 pp), suggesting that short captions do not
contain enough signal for the models to improve and can
negatively affect the model.

RQ2: Which data type mixture strategy improves
the model’s performance the most?

There is a general improvement trend as we increase
the size across all strategies. Tab. 2 shows the performance
of the models that were fine-tuned using our data mixture
strategies. As we increase the dataset size, the mean perfor-
mance of all mixtures improves. For instance, the Random
strategy improves from 76.7% at 2K samples to 81.9% at
30K samples and the Weighted strategy shows an improve-
ment from 79.0% at 2K samples to 82.6% at 30K samples.
This trend demonstrates the value of additional data regard-
less of the mixing strategy employed.

As the size of dataset increases, different strategies
perform similarly. The performance difference between
various strategies converges as we increase the size of the
datasets, and they perform similarly in terms of mean and
standard deviations. Yet, the Weighted method achieves
the highest average among other strategies (82.6%). This
convergence suggests that the choice of mixing strategy
becomes less critical as more data becomes available. In
contrast, smaller dataset sizes such as 2k indicate that
the Weighted strategy outperforms other mixture strategies,
achieving an accuracy of 79.0 ± 0.6.

Having a uniform distribution of games does not sig-
nificantly improve performance. The Stratified strategy,
which aims to balance the representation of different games
in the dataset, does not significantly enhance performance

Table 3. Average improvement for different sizes for each category

Category/Dataset Size 2K 5K 10K 20K 30K

Action Understanding 1.6 2.5 2.5 3.7 3.9
Anomalies and Glitches 23.4 33.0 33.2 34.0 32.0
Character Analysis 2.6 3.9 4.2 4.7 4.4
Common Sense Reasoning 3.7 4.2 3.8 4.3 4.0
Gameplay Mechanics 4.2 5.0 6.4 8.2 8.9
HUD and UI 9.3 12.9 16.5 18.9 21.0
Miscellaneous 7.2 7.9 9.6 9.9 9.8
Scene Understanding –0.2 0.6 1.3 2.0 2.0
Small Details 0.3 1.2 2.4 3.4 3.0
Spatial Reasoning 5.3 6.2 7.1 7.8 7.4

Table 4. Performance of various models on the evaluation set (%).

Model Accuracy Model Accuracy

Bunny-1.1-Llama-3-8B 73.3 LLaVA-v1.5-13b 64.6
VIDEOGAMEBUNNY 85.1 LLaVA-v1.6-vicuna-13b 71.7
LLaVA-v1.5-7b 61.3 LLaVA-v1.6-34b 83.9

compared to other strategies. For example, in the 2k dataset,
the Stratified strategy (78.0 ± 0.2) is outperformed by the
Weighted strategy (79.0 ± 0.6). Similarly, in the 30k
dataset, the performance of both strategies is comparable
(81.6 ± 0.7 vs 82.6 ± 0.3).

Fine-tuning improves performance across all cate-
gories, with Anomalies and Glitches improving the most.
Fig. A6 shows that fine-tuning improves Bunny’s perfor-
mance across all categories for almost all dataset sizes. The
Anomalies and Glitches and HUD and UI categories im-
prove the most, with average improvements of +32.0 and
+21.0, using a dataset size of 30K (Tab. 3).

RQ3: How does VIDEOGAMEBUNNY perform com-
pared to SOTA open-source models on game under-
standing tasks?

VIDEOGAMEBUNNY achieves 85.1% (Tab. 2) on the
evaluation set, outperforming all trained models and sur-
passing various open-source models (Tab. 4). It outper-
forms even LLaVA-1.6-34b, despite its larger parameter
count, by +1.2. Breakdown of accuracy per category reveals
that the most significant benefits come from game-specific
categories, such as anomaly and glitch detection (+16.6)
and HUD and UI (+3.0) (Tab. A2). Fig. 7 shows a sam-
ple from evaluation set where VIDEOGAMEBUNNY cor-
rectly answers a common-sense reasoning question while
both Bunny and LLaVA-1.6-34b fail.

We also conduct an informal qualitative analysis,
prompting the models with more open-ended questions,
which underlines that VIDEOGAMEBUNNY demonstrates
an improved understanding of video game content and pro-
vides better answers (Fig. 8, and Sec. A3).
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Models comparison in video game understanding

Question: Based on the score and time remaining,
which team is likely to win the match?
VIDEOGAMEBUNNY: (B): The blue team is likely to win ✓

Bunny: (C): The red team is likely to win. ✗

LLaVA-1.6-34b: (C): The red team is likely to win. ✗

Figure 7. VIDEOGAMEBUNNY correctly utilizes information on
the HUD to answer the question, while the basemodel Bunny and
the larger model LLaVA-1.6-34b fail to provide a correct answer.

7. Discussion

Potential negative impacts: Our study initiates the de-
velopment of a model for understanding game content, with
applications in game playing, testing, and commentary. The
short-term implications for the gaming industry include en-
hancing the productivity of game testers and enhancing
quality assurance processes. One possible negative impact
of such advancement is the facilitation of in-game cheating.
As AI models becomes more adept at understanding game
contents, there is a risk that they could be used to create
sophisticated cheating tools.

Biases and mistakes in dataset generation: In this
study, we use existing models to annotate our dataset. While
this approach aligns with previous studies [29, 61] and fol-
lows the same principles as the teacher-student learning
paradigm [16], we acknowledge that our data may contain
biases and mistakes introduced by these existing models.

Quality of images: Images in our dataset, sourced from
YouTube videos, may include low-quality frames despite
filtering for high-quality videos. Motion blur in video
games and sampling during scene transitions can result in
some blurry or less-than-ideal images.

Use of various models for annotation: In the annota-
tion process, we utilize various models depending on their
availability and cost. While this process brings diversity to
the labels, it is not meant to compare the different models
against each other in terms of performance.

Use of multiple-choice questions to evaluate game un-
derstanding: We use multiple-choice questions to evaluate

Models comparison in image captioning

Question: Write a short summary of the image
VIDEOGAMEBUNNY: The image is a screenshot
from a video game, showing a character in mid-air,
equipped with a wingsuit, flying over a
mountainous landscape. The game’s HUD
elements are visible, including a distance marker
and a weapon indicator. . . .
Bunny: A video game scene shows a man in a
green shirt and blue pants jumping off a cliff. He is
holding a parachute and is in mid-air. . . .
LLaVA-1.6-34b: The image appears to be a
screenshot from a video game, showing a
first-person perspective of a character in mid-air,
likely after jumping or falling from a height. The
character is equipped with a parachute, which is
open and slowing their descent. . . .

Figure 8. VIDEOGAMEBUNNY provides a detailed description of
video game content in the image, while other models show inaccu-
racies (highlighted in red). Responses are truncated to save space.

a model’s game understanding, as it allows for a clear com-
parison. While this format has been extensively for bench-
marks [15, 53], it might not be the best proxy for game un-
derstanding. Future work needs to focus on human evalua-
tion or the use of LLMs as judges [58].

8. Conclusion

We introduce a new instruction-following dataset, with
389,565 image-instruction pairs, specifically designed for
video game understanding. We investigate the effectiveness
of fine-tuning LMMs on different instruction-following
dataset types and mixtures of them, and finally introduce
VIDEOGAMEBUNNY, an 8B parameter model that outper-
forms a SOTA model, LLaVA-1.6-34b, on a game-related
question answering benchmark.

8
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Supplementary Material

A1. Additional details
A1.1. Prompts used to generated datasets

Figure A1. Long caption generation with GPT-4V

Please provide a detailed description of the image, ensuring that no details are omitted. Describe every element you
observe within the image to provide a comprehensive account of its contents. Don’t be lazy and it is important to get
everything well done.

Figure A2. image-to-JSON data generation

First, provide a detailed description of the image, including every small detail possible. Next, create ten multiple-
choice questions based on the content of the image. Each question should test the understanding of the image’s content.
Follow this JSON format: { ”description”: ”Full Image Description”, ”short description”: ”Short Image Descrip-
tion”, ”dialogue”: [”Any visible dialogue text as a json list”], ”on screen subtitle”: ”any subtitle on the image or
n/a”, ”minimap details”: ”Information from the minimap”, ”inventory display”: ”Information about the player’s in-
ventory”, ”score or progress”: ”Details about scores or progress indicators”, ”NPC status”: ”Information about
NPCs”, ”event indicators”: ”Indicators of any special events”, ”interaction prompts”: ”Visible prompts for player
interactions”, ”game mode”: ”Current game mode or context”, ”HUD description”: ”description of the game HUD
or n/a if there is no HUD”, ”on screen watermark”: ”any watermark on the image or n/a”, ”summary of ui values”:
”summary of the UI values as json or empty json if there is no UI”, ”scene description”: ”A high-level overview of
the entire scene”, ”character list”: [ { ”name”: ”Character Name”, ”appearance”: ”Description of appearance”,
”clothing”: ”Description of clothing”, ”facial expression”: ”Description of facial expression” } ], ”object list”:
[”Object 1”, ”Object 2”, ...], ”texture details”: ”a json list of object name and texture patterns that they have”,
”lighting details”: ”Specific information about the light sources and shadows in the scene”, ”color palette”: [”hex-
adecimal color code”, ”hexadecimal color code”, ...], ”weather conditions”: ”Description of any weather effects
present, or say cannot be determined”, ”environmental effects”: ”Description of any environmental effects like fog,
rain, fire, etc.”, ”animation states”: ”Descriptions of any static poses or actions implied by character positions”, ”er-
ror log”: ”Any noticeable glitches or anomalies in the image”, ”glitches”: ”any glitch or buggy aspect of the image
or none if there is nothing”, ”player status”: { ”health”: ”Player’s health value”, ”equipment”: ”Player’s equipment
details”, ”other status”: ”Other status indicators” } }

Figure A3. LLama-3-based data generation

Using the image description provided below, create 10 questions and their corresponding answers that pertain exclu-
sively to the details given in the description. Format your response using JSON.
Image description: <image description here >
Ensure your questions are relevant and directly related to the image description. For example, do not ask about elements
not explicitly mentioned in the description.

Figure A4. GPT-4o-based data generation

First, provide a detailed description of the image, including every small detail possible. Next, create 10 questions
answers based on the content of the image. Each question should test the understanding of the image’s content.
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Table A1. Description of entries in the JSON structure

Key Description

Description Detailed description of the image
Short description Concise description of the image
Dialogue A (JSON) list containing any visible dialogue text
On-Screen subtitle Subtitles displayed on the image
Inventory display Details of the player’s inventory visible on the image
HUD description Description of the game’s Head-Up Display (HUD)
Scene description High-level overview of the entire scene
NPC status High level information about non-playable characters (NPCs)
Character list List of characters, including their appearances, clothing, and facial expressions
Animation states Descriptions of static poses or actions suggested by character positions
Object list A (JSON) list containing all the visible objects in the scene
Texture details A (JSON) list detailing object names and their texture patterns
Lighting details Specific information about the light sources and shadows in the scene
Weather conditions Description of any weather effects present, or state if they cannot be determined
Environmental effects Description of environmental effects such as fog, rain, or fire
Player status Player’s health, equipment details, and other status indicators

100 101 102 103 104

1

Figure A5. Image distribution across games, with a median of 205 unique images per game.
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A2. Additional results
In this section, we provide complementary results for the experiments conducted in the main text.
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Figure A6. Breakdown of improvement (percentage points) compared to the basemodel Bunny, after fine-tuning it on different mixture
strategies by different question categories. As we increase the size of the dataset, all categories show improvement, with Anomalies and
Glitches showing the greatest gains.

Table A2. Comparison of VIDEOGAMEBUNNY and LLaVA-1.6-34b

Category VIDEOGAMEBUNNY LLaVA-1.6-34b

Action Understanding 84.6 ↑(+2.9) 81.7
Anomalies and Glitches 82.1 ↑(+16.6) 65.5
Character Analysis 84.9 ↑(+0.6) 84.3
Common Sense Reasoning 89.1 ↓(-2.8) 91.9
Gameplay Mechanics 80.6 ↓(-5.8) 86.4
HUD and UI 84.1 ↑(+3.0) 81.1
Miscellaneous 86.2 ↑(+1.7) 84.5
Scene Understanding 92.4 ↑(+0.2) 92.2
Small Details 80.1 ↓(-0.2) 80.3
Spatial Reasoning 78.3 ↑(+1.0) 77.3
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A3. Qualitative samples
In this section, we provide qualitative results from VIDEOGAMEBUNNY.

Qualitative results where VIDEOGAMEBUNNY provides a detailed description of the image.

Question: Briefly describe the image.
VIDEOGAMEBUNNY: The image is a screenshot from a video game, showing a character standing in front of a large, ornate
painting. The painting depicts a man with long hair and a beard, wearing a period outfit with a high collar and a sash. The
character is facing the painting, with their back to the viewer, and appears to be observing it. The room has a dimly lit,
old-fashioned ambiance, with a sconce on the wall and a large, framed painting on the wall behind the character.

Figure A7. VIDEOGAMEBUNNY provides a detailed description of the image
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Qualitative results where VIDEOGAMEBUNNY provides a detailed description of the image.

Question: Briefly describe the image.
VIDEOGAMEBUNNY: The image is a still from a video game, depicting two characters in a dimly lit wooden structure. The
character on the left is a man with a stern expression, wearing a dark robe with a patterned design. He is facing the other
character, who is partially obscured and has their back to the viewer. The second character appears to be wearing a similar robe.
The scene is set in a rustic environment with wooden walls and a thatched roof.

Figure A8. VIDEOGAMEBUNNY provides a detailed description of the image
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Qualitative results where VIDEOGAMEBUNNY provides a correct answer with minor inaccuracies

Question: Describe the characters in the image
VIDEOGAMEBUNNY: The image shows two characters on horseback. The character in the foreground is holding a lantern, and
the character in the background is following them. Both characters are wearing hats.

Figure A9. VIDEOGAMEBUNNY provides a detailed description of the image with minor inaccuracies. Details that are incorrect are
highlighted and emphasized in red.
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Qualitative results where VIDEOGAMEBUNNY provides a correct answer with some inaccuracies

Question: Describe the characters in the image
VIDEOGAMEBUNNY: The image shows Batman, who is in the center of the frame, flying through the air. He is wearing his
iconic black suit with a yellow utility belt. Below him, there is a character named Penguin, who is wearing a tuxedo and a bowler
hat.

Figure A10. VIDEOGAMEBUNNY hallucinates extra characters and a Batman utility belt in the image, which are not actually present.
Details that are incorrect are highlighted and emphasized in red.
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Qualitative results where VIDEOGAMEBUNNY provide a wrong answer for a query

Question: What is written on the image?
VIDEOGAMEBUNNY: The text on the image reads: ‘Tch... Tch... Tch... You way around it, I guess. Tch... Tch... Tch... I’ll tell
you, without stepping this guy away...’

Figure A11. A sample showing that VIDEOGAMEBUNNY struggles to convert the image to text.
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Qualitative results where VIDEOGAMEBUNNY provide a wrong answer for a query

Question: What is written on the left?
VIDEOGAMEBUNNY: The word ’RELOAD’ is written on the left side of the gun.

Figure A12. A sample showing that VIDEOGAMEBUNNY fails to provide a correct answer. While the word RELOAD is written in the
center of the image, the query asks, What is written on the left? which should be answered with nothing.
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A4. Sample image-to-JSON conversion

Sample image-to-JSON conversion done by VIDEOGAMEBUNNY

1 {
2 "description": "The image shows a first-person perspective of a video game, likely a survival horror title. The player is holding a large,

futuristic-looking rifle with a circular scope. The rifle has a white and black camouflage pattern. The player's left hand is visible, adorned with a
tattoo of a skull and what appears to be a snake. The player is standing in a dark, dilapidated wooden structure, possibly a barn or shed. The walls
are made of weathered wooden planks, and the floor is made of wooden planks as well. There is a doorway on the left side of the image, leading to a
darker area. A small, white silhouette of a person holding a rifle is visible on the left side of the screen, indicating the player's position on a
minimap. The minimap shows the player's location as a white dot within a circular area. The player's health bar is visible at the bottom of the
screen, represented by a green bar with a white outline. The health bar is nearly full. The player's ammunition count is displayed in the bottom
right corner of the screen, showing '0' bullets remaining in the current magazine and '41' bullets in reserve. A small icon of a skull with a knife
is visible next to the ammunition count, possibly indicating a special ability or weapon. The overall atmosphere of the image is dark, gritty, and
suspenseful, typical of the survival horror genre.",

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→

3 "dialogue": [],
4 "on_screen_subtitle": "n/a",
5 "minimap_details": "The minimap shows the player's location as a white dot within a circular area. The minimap is located in the bottom left corner of

the screen.",↪→
6 "inventory_display": "The image does not show the player's full inventory.",
7 "score_or_progress": "The image does not display any score or progress indicators.",
8 "NPC_status": "The image does not provide any information about NPCs.",
9 "event_indicators": "The image does not display any specific event indicators.",

10 "interaction_prompts": "The image does not show any interaction prompts.",
11 "game_mode": "The image suggests the game is in a single-player campaign mode, based on the presence of a minimap and health bar.",
12 "HUD_description": "The HUD consists of a circular minimap in the bottom left corner, a circular health bar in the bottom left corner, and an ammunition

counter in the bottom right corner. The ammunition counter displays the current magazine capacity, the remaining bullets in the magazine, and the
total reserve ammunition.",

↪→
↪→

13 "on_screen_watermark": "MKiceAndFire",
14 "summary_of_ui_values": {
15 "health": "Nearly full",
16 "ammunition": "0/41"
17 },
18 "scene_description": "The scene takes place inside a dilapidated wooden structure, likely a barn or shed. The structure is dark and appears to be

abandoned. The walls and floor are made of weathered wooden planks. There is a doorway on the left side of the image, leading to a darker area.",↪→
19 "character_list": [
20 {
21 "name": "Player",
22 "appearance": "Cannot be fully determined, but the player's left hand is visible, showing a tattoo of a skull and a snake.",
23 "clothing": "Cannot be fully determined",
24 "facial_expression": "Cannot be determined"
25 }
26 ],
27 "object_list": [
28 "Rifle",
29 "Scope",
30 "Wooden planks (walls and floor)",
31 "Doorway"
32 ],
33 "texture_details": [
34 {
35 "object": "Rifle",
36 "texture": "White and black camouflage pattern"
37 },
38 {
39 "object": "Wooden planks",
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40 "texture": "Weathered, with visible grain and knots"
41 }
42 ],
43 "lighting_details": "The scene is dimly lit, with the primary light source appearing to be coming from the doorway on the left. This creates a sense of

depth and shadows within the structure.",↪→
44 "color_palette": [
45 "#181818",
46 "#303030",
47 "#505050",
48 "#FFFFFF"
49 ],
50 "weather_conditions": "Cannot be determined",
51 "environmental_effects": "None",
52 "animation_states": "The player is holding the rifle in a ready position, suggesting a state of alertness and preparedness for combat.",
53 "error_log": "None",
54 "glitches": "None",
55 "player_status": {
56 "health": "Nearly full",
57 "equipment": "The player is equipped with a large, futuristic-looking rifle with a circular scope.",
58 "other_status": "The player has 0 bullets remaining in the current magazine and 41 bullets in reserve."
59 }
60 }

Sample image-to-JSON conversion done by VIDEOGAMEBUNNY

1 {
2 "description": "The image shows a third-person perspective of a video game, likely Grand Theft Auto V, based on the HUD elements and graphics style. The

player is driving a white van on a multi-lane road. The van is positioned slightly to the right of the center of the road, heading towards the
viewer. The road is a typical city street with sidewalks, buildings, and other vehicles. The time of day appears to be midday with clear skies. The
HUD elements visible include a minimap in the bottom left corner, a money counter in the top right corner, and a small portion of the player's
health bar in the bottom right corner. The minimap shows the player's location on a simplified map of the surrounding area. The money counter
displays the amount of in-game currency the player has, which is 9969. The health bar is partially obscured, but it appears to be mostly full.",

↪→
↪→
↪→
↪→
↪→

3 "dialogue": [],
4 "on_screen_subtitle": "n/a",
5 "minimap_details": "The minimap shows the player's location on a simplified map of the surrounding area. The player is represented by a white arrow

pointing upwards, indicating their direction. The map shows roads, buildings, and a body of water, likely a river or lake.",↪→
6 "inventory_display": "Not visible in the image.",
7 "score_or_progress": "The player's current in-game money is displayed as 9969 in the top right corner.",
8 "NPC_status": "Not applicable, as there are no visible NPCs in the image.",
9 "event_indicators": "None visible in the image.",

10 "interaction_prompts": "None visible in the image.",
11 "game_mode": "Cannot be determined from the image.",
12 "HUD_description": "The HUD consists of a minimap in the bottom left corner, a money counter in the top right corner, and a small portion of the

player's health bar in the bottom right corner.",↪→
13 "on_screen_watermark": "The watermark \"Elegy Ave\" is visible in the bottom right corner.",
14 "summary_of_ui_values": {
15 "money": "9969"
16 },
17 "scene_description": "The scene depicts a typical urban environment with buildings, roads, and vehicles. The player is driving a van on a multi-lane

road, heading towards a large, modern-looking building with a blue light display.",↪→
18 "character_list": [],
19 "object_list": [
20 "Van",
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21 "Buildings",
22 "Road",
23 "Sidewalk",
24 "Trees",
25 "Vehicles",
26 "Streetlights",
27 "Blue Light Display"
28 ],
29 "texture_details": [
30 {
31 "object": "Buildings",
32 "texture": "Brick, concrete, glass"
33 },
34 {
35 "object": "Road",
36 "texture": "Asphalt"
37 },
38 {
39 "object": "Sidewalk",
40 "texture": "Concrete"
41 }
42 ],
43 "lighting_details": "The scene is brightly lit, suggesting midday sun. The lighting casts soft shadows from the buildings and trees onto the road.",
44 "color_palette": [
45 "#87CEEB",
46 "#FFFFFF",
47 "#A9A9A9",
48 "#696969",
49 "#808080"
50 ],
51 "weather_conditions": "Clear and sunny.",
52 "environmental_effects": "None visible in the image.",
53 "animation_states": "The van's wheels suggest it is in motion, and the other vehicles on the road imply traffic.",
54 "error_log": "None visible in the image.",
55 "glitches": "None visible in the image.",
56 "player_status": {
57 "health": "Partially obscured, but appears to be mostly full.",
58 "equipment": "Not visible in the image.",
59 "other_status": "The player has 9969 in-game currency."
60 }
61 }

Sample image-to-JSON conversion done by VIDEOGAMEBUNNY

1 {
2 "description": "The image captures a scene from the video game Red Dead Redemption 2, showcasing the protagonist, Arthur Morgan, riding his horse, Black

Jack, along a dirt path. The path leads towards a small, industrial settlement built on a cliffside. The settlement features wooden buildings with
corrugated metal roofs, characteristic of the late 19th-century American frontier. A plume of black smoke rises from a chimney in the background,
suggesting industrial activity. The surrounding environment is a mix of rocky terrain and lush vegetation, with a dense forest visible in the
distance. The sky is overcast, with a hazy, diffused light suggesting either early morning or late afternoon. The overall atmosphere is one of quiet
anticipation, as if Arthur is about to enter a new chapter in his journey.",

↪→
↪→
↪→
↪→
↪→

3 "dialogue": [],
4 "on_screen_subtitle": "n/a",
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5 "minimap_details": "n/a",
6 "inventory_display": "n/a",
7 "score_or_progress": "n/a",
8 "NPC_status": "n/a",
9 "event_indicators": "n/a",

10 "interaction_prompts": "n/a",
11 "game_mode": "n/a",
12 "HUD_description": "n/a",
13 "on_screen_watermark": "n/a",
14 "summary_of_ui_values": {},
15 "scene_description": "Arthur Morgan riding his horse Black Jack towards a small industrial settlement on a cliffside.",
16 "character_list": [
17 {
18 "name": "Arthur Morgan",
19 "appearance": "A rugged man with a beard and mustache, wearing a dark hat and a dark coat.",
20 "clothing": "Dark hat, dark coat, dark pants, and boots.",
21 "facial_expression": "Cannot be determined as his back is to the camera."
22 }
23 ],
24 "object_list": [
25 "Horse",
26 "Dirt path",
27 "Wooden buildings",
28 "Corrugated metal roofs",
29 "Smoke plume",
30 "Chimney",
31 "Forest",
32 "Rocks",
33 "Vegetation",
34 "Trees"
35 ],
36 "texture_details": [
37 {
38 "object": "Horse",
39 "texture": "Short, dark brown fur"
40 },
41 {
42 "object": "Dirt path",
43 "texture": "Uneven, dusty, with patches of grass"
44 },
45 {
46 "object": "Wooden buildings",
47 "texture": "Weathered wood planks"
48 },
49 {
50 "object": "Corrugated metal roofs",
51 "texture": "Rusted and dented metal sheets"
52 },
53 {
54 "object": "Rocks",
55 "texture": "Rough, jagged, with moss and lichen"
56 },
57 {
58 "object": "Vegetation",
59 "texture": "A mix of grass, shrubs, and trees"
60 }
61 ],
62 "lighting_details": "The scene is lit by diffused sunlight, suggesting an overcast sky. The light is soft and even, with no strong shadows.",
63 "color_palette": [
64 "#A0A0A0",
65 "#808080",
66 "#606060",
67 "#404040",
68 "#202020",
69 "#008000",
70 "#006400",
71 "#004000"
72 ],
73 "weather_conditions": "Overcast",
74 "environmental_effects": "Smoke plume rising from a chimney",
75 "animation_states": "Arthur Morgan is sitting upright on his horse, suggesting a calm and controlled ride.",
76 "error_log": "None",
77 "glitches": "None",
78 "player_status": {
79 "health": "n/a",
80 "equipment": "n/a",
81 "other_status": "n/a"
82 }
83 }
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Sample image-to-JSON conversion done by VIDEOGAMEBUNNY

1 {
2 "description": "The image showcases a close-up of a man in a World War II-era military uniform. He is positioned slightly to the right of the center,

his gaze directed slightly upwards and to the left. His expression is serious, bordering on somber. He has short, dark hair and a prominent nose.
The man's uniform is a muted green, with a noticeable dirt smudge on his left cheek. A dark green helmet with a netting pattern covers his head,
partially obscuring his hair. The helmet's chin strap is visible, fastened with a metal buckle. A thick, dark green strap crosses his chest, likely
part of a backpack or equipment harness. The background is a blurred depiction of a battlefield, with other soldiers in similar uniforms visible in
the distance. The overall color palette is muted and desaturated, reflecting the grim atmosphere of war.",

↪→
↪→
↪→
↪→
↪→

3 "dialogue": [],
4 "on_screen_subtitle": "n/a",
5 "minimap_details": "n/a",
6 "inventory_display": "n/a",
7 "score_or_progress": "n/a",
8 "NPC_status": "n/a",
9 "event_indicators": "n/a",

10 "interaction_prompts": "n/a",
11 "game_mode": "n/a",
12 "HUD_description": "n/a",
13 "on_screen_watermark": "n/a",
14 "summary_of_ui_values": {},
15 "scene_description": "The scene depicts a soldier in the midst of a battlefield, likely during World War II, given the uniforms and equipment.",
16 "character_list": [
17 {
18 "name": "Unknown",
19 "appearance": "The man appears to be in his late twenties to early thirties. He has a rugged appearance with short, dark hair and a prominent nose.",
20 "clothing": "He is wearing a World War II-era military uniform in a muted green color. A dark green helmet with a netting pattern covers his head,

and a thick, dark green strap crosses his chest, likely part of a backpack or equipment harness.",↪→
21 "facial_expression": "His expression is serious and slightly somber, suggesting he is focused on the situation at hand."
22 }
23 ],
24 "object_list": [
25 "Military uniform",
26 "Helmet",
27 "Backpack strap",
28 "Backpack (partially visible)",
29 "Soldiers (in the background)"
30 ],
31 "texture_details": [
32 {
33 "object": "Helmet",
34 "texture": "Netting pattern"
35 },
36 {
37 "object": "Uniform",
38 "texture": "Camouflage pattern"
39 }
40 ],
41 "lighting_details": "The lighting is soft and diffused, likely due to overcast skies or fog. It casts subtle shadows on the man's face, accentuating his

features.",↪→
42 "color_palette": [
43 "#5C6B5A",
44 "#3D4A3B",
45 "#7A8A76",
46 "#B2B4A9"
47 ],
48 "weather_conditions": "The weather appears to be overcast or foggy, as evidenced by the soft lighting and lack of harsh shadows.",
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49 "environmental_effects": "The background suggests a battlefield, with smoke or dust particles visible in the air.",
50 "animation_states": "The man appears to be in a still pose, likely captured in a moment of pause or reflection during the chaos of battle.",
51 "error_log": "None",
52 "glitches": "None",
53 "player_status": {
54 "health": "n/a",
55 "equipment": "n/a",
56 "other_status": "n/a"
57 }
58 }

Sample image-to-JSON conversion done by VIDEOGAMEBUNNY

1 {
2 "description": "The image shows a male character in a video game, seemingly in the middle of a climbing or jumping action. He is positioned on a stone

platform within a dimly lit, ancient-looking structure. The platform is part of a larger architectural complex, with visible stone walls and a
barred gate in the background. The character is dressed in a sleeveless top and pants, suggesting a warrior or adventurer archetype. He is equipped
with a sword sheathed on his back and appears to be in motion, with his body angled towards the platform's edge. The overall atmosphere is one of
adventure and exploration, with the character's pose hinting at a moment of action or transition within the game.",

↪→
↪→
↪→
↪→

3 "dialogue": [],
4 "on_screen_subtitle": "n/a",
5 "minimap_details": "Cannot be determined",
6 "inventory_display": "Not visible",
7 "score_or_progress": "Not visible",
8 "NPC_status": "No NPCs present",
9 "event_indicators": "None visible",

10 "interaction_prompts": "None visible",
11 "game_mode": "Cannot be determined",
12 "HUD_description": "n/a",
13 "on_screen_watermark": "SHIRRAKO in the bottom right corner",
14 "summary_of_ui_values": {},
15 "scene_description": "The scene is set within a large, ancient-looking structure, possibly a temple or palace. The architecture suggests a Middle

Eastern or Mediterranean influence. The environment is dimly lit, with the primary light source appearing to be natural light filtering in from an
unseen opening above.",

↪→
↪→

16 "character_list": [
17 {
18 "name": "Unknown",
19 "appearance": "Male, athletic build",
20 "clothing": "Sleeveless top, pants, possibly leather or fabric",
21 "facial_expression": "Cannot be determined"
22 }
23 ],
24 "object_list": [
25 "Stone platform",
26 "Stone walls",
27 "Barred gate",
28 "Sword",
29 "Pottery jug"
30 ],
31 "texture_details": [
32 {
33 "object": "Stone walls",
34 "texture": "Rough, uneven stone with visible cracks and weathering"
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35 },
36 {
37 "object": "Stone platform",
38 "texture": "Similar to the walls, but with a slightly smoother appearance"
39 }
40 ],
41 "lighting_details": "The scene is dimly lit, with the primary light source appearing to be natural light coming from an unseen opening above. This

creates a sense of depth and highlights the textures of the stone surfaces.",↪→
42 "color_palette": [
43 "#5C4A3A",
44 "#3B322A",
45 "#7A6D5B",
46 "#A1887F"
47 ],
48 "weather_conditions": "Cannot be determined",
49 "environmental_effects": "None visible",
50 "animation_states": "The character's pose suggests a dynamic action, either in the middle of a jump or a climbing maneuver.",
51 "error_log": "None visible",
52 "glitches": "None",
53 "player_status": {
54 "health": "Not visible",
55 "equipment": "Sword visible on back",
56 "other_status": "Not visible"
57 }
58 }
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